Iron-Oxo Aggregates: Synthesis, Structure, and **lH NMR** of the Octanuclear Hexacation $[Fe_8O_5(OAc)_8(tren)_4]^{6+}$, Containing a Square-Planar Oxide Bridge

Vinod *S.* **Nair and Karl S. Hagen'**

Department of Chemistry, Emory University, Atlanta, Georgia **30322**

Received September 17, 1993

The importance of iron-oxo interactions in chemistry and biochemistry has generated a considerable effort to develop the chemistry of polynuclear iron-oxo aggregates.' We have undertaken a study of the formation of possible model compounds in order to understand the nucleation and propagation of the highnuclearity iron-oxo-hydroxo aggregates of the iron storage protein ferritin.² A series of iron(III)-oxo aggregates with $Fe₂(\mu$ -O),³ $Fe₃(\mu_3-O)⁴$ Fe₃(μ -O)₂(μ -OH),⁵ Fe₄(μ ₃-O)₂,⁶ Fe₄(μ -O)₂(μ -OH)₄,⁷Fe₆(μ ₃-O)₂(μ -OH)₂,⁸ Fe₆(μ ₃-O)₂(μ -OH)₆,⁹ Fe₆(μ ₄-(O₂))- $(\mu\text{-}OH)_2$,¹⁰ Fe₆(μ ₆-O),¹¹ Fe₈(μ ₃-O)₂(μ -OH)₁₂,¹² Fe₁₀(μ -OCH₃)₂₀,¹³
Fe₁₁(μ ₃-O)₆(μ ₃-OH)₆,¹⁴ Fe₁₆M(μ ₄-O)₆(μ ₃-O)₄(μ ₃-OH)₈(μ -OH)₂,¹⁵ $F_{e_{17}}(\mu_{3}O)_{6}(\mu_{3}OH)_{6}(\mu_{3}OH)_{6}$," $F_{e_{17}}(\mu_{3}O)_{6}(\mu_{3}OH)_{6}(\mu_{3}OH)_{6}(\mu_{3}OH)_{6}$
 $F_{e_{17}}(\mu_{3}O)_{4}(\mu_{3}OH)_{6}(\mu_{3}OH)_{10}^{16}$ and $F_{e_{19}}(\mu_{3}O)_{6}(\mu_{3}OH)_{6}(\mu_{3}OH)_{6}(\mu_{3}OH)_{6}$
 $F_{e_{17}}(\mu_{3}O)_{6}$ or OH(R)⁻ bridges have the possibility of four-membered $Fe₂O₂$ rhombs and are therefore more highly condensed than those also bridged by the three atoms of carboxylato ligands.⁵ The variable bridging modes **a-e** adopted by the *02-* and/or OH(R)- bridges

- (1) (a) Lippard, S. J. *Angew. Chem., Int. Ed. Engl.* 1988, 27, 344–361. (b)
Que, L., Jr.; Scarrow, R. C. In *Metal Clusters in Proteins*; Que, L., Jr., Ed.; AmericanChemical Society: Washington, DC, 1988; pp 153-178. (c) Que, L., Jr.; True, A. E. In *Progress in Inorganic Chemistry: Bioinorganic Chemistry;* Lippard, S. J., Ed.; John Wiley & **Sons:** New York, 1990; Vol. 38; pp 97-200.
- (a) Theil, E. C. *Annu. Reu. Biochem.* 1987,56,289-315. (b) Harrison, P. M.; Lilley, T. H. In *Iron Carriers and Iron Proteins;* Loehr, T. M., Ed.; VCH Publishers, Inc.: New York, 1989; pp 123-238. (c) Harrison, P. M.; Artymiuk, P. J.; Ford, G. C.; Lawson, D. M.; Smith, J. M. A.; Treffry, A.; White, J. L. In *Biomineralization: Chemical and Biochemical Perspecfiues;* Mann, s., Webb, J., Williams, R. J. P., Eds.; VCH Publishers, Inc.: Weinheim, Germany, 1989; pp 257-294.
- (a) Kurtz, D. M., Jr. *Chem. Reu.* 1990,90, 585-606. (b) Norman, R. E.; Yan, *S.;* Que, L., Jr.; Backes, G.; Ling, J.; Sanders-Loehr, J.; Zhang, J. H.; OConnor, C. J. *J. Am. Chem. Sac.* 1989,112, 1554-1562. (c) Mbnage,S.;Que,L., Jr. *Nouv.* J. *Chim.* **1991,15,431-438andreferences** therein.
- Cannon, R. D.; White, R. P. In *Progressin Inorganic Chemistry;* Lippard,
-
- S. J., Ed.; John Wiley & Sons: New York, 1988; Vol. 36.
Hagen, K. S. Angew. Chem., Int. Ed. Engl. 1992, 31, 1010–1012.
(a) Armstrong, W. H.; Roth, M. E.; Lippard, S. J. J. Am. Chem. Soc.
1987, 109, 6318–6326. (b) McCusker, E. A.; Mino, M. L.; Shin, K.; Coggin, D. K.; Hagen, P. M.; Huffman, J. C.; Christou, G.; Hendrickson, D. *J. Am. Chem. Sac.* 1991, 113, 3012-3021.
- (a) Murch, B. P.; Boyle, P. D.; Que, L., Jr. *J. Am. Chem. Soc.* 1**985,**
107,6728. (b) Murch, B. P.; Bradley, F. C.; Boyle, P. D.; Papaefthymiou, V.; Que, L., Jr. *J. Am. Chem. Sot.* 1987,109,7993-8003. (c) Drueke, S.; Wieghardt, K.; Nuber, B.; Weiss, J.; Bominaar, E. L.; Sawaryn, A.; Winkler, H.; Trautwein, A. X. *Inorg. Chem.* 1989, 28, 4477-4483.
- (8) (a) Batsanov, A. S.;Struchkov, Y. T.; Timko,G. A. *Koord. Khim.* 1988, 14,266. (b) Micklitz, W.; Lippard, S. J. *Inorg.* Chem. 1988,27,3067- 3069. (c) McCusker, J. K.; Christmas, C.; Hagen, P. M.; Chadha, R. K.;Harvey, D. F.; Hendrickson,D.J. *Am. Chem.Soc.* 1991,113,6114 6 124.
- (9) Harding, C. J.; Henderson, R. K.; Powell, A. K. *Angew. Chem., Int. Ed. Engl.* 1993, 32, 570-572.
- Micklitz, W.; Bott, **S.** G.; Bentsen, J. G.; Lippard, S. J. *J. Am. Chem. Sac.* 1989, 111, 372.
- (a) Hegetschweiler, K.; Schmalle, H.; Streit, H. M.; Schneider, W. Inorg.
Chem. 1990, 29, 3625–3627. (b) Hegetschweiler, K.; Schmalle, H.; Streit, H. M.; Gramlich, V.; Hund, H.-U.; Erni, I. Inorg. Chem. 1992, 31, 1299–1302 *31.* I 299-1 **702.**
- (12) Wieghardt, K.; Pohl, K.; Jibril, I.; Huttner, G. Angew. Chem., Int. Ed. *Engl.* 1984, 23, 77-78.
- Taft, K. L.; Lippard, S. J. *J. Am. Chem. Sac.* 1990, 112, 9629-9630.
- (a) Gorun, S. M.; Lippard, **S.** J. *Nature* 1986,319,666-668. (b) Gorun, S. M.; Papaefthymiou, G. C.; Frankel, R. B.; Lippard, S. J. J. Am.
Chem. Soc. 1987, 109, 3337–3348.
Micklitz, W.; Lippard, S. J. J. Am. Chem. Soc. 1989, 111, 6856.
Heath, S. L.; Powell, A. K. Angew. Chem., Int. Ed., Engl
-
- 191-193.

are found in the above cores and are central to the aggregation process. We report here the octanuclear iron-oxo-carboxylato aggregate $[Fe_8(\mu_4{\text{-}}O)(\mu_3{\text{-}}O)_4(OAc)_8(\text{tren})_4]^{6+}$ (1(CF₃SO₃)₆.5CH₃-CN), which is the first iron-oxo aggregate with a square-planar oxide and which exhibits an unusual ¹H NMR spectrum for an iron(III)-oxo aggregate.

Our initial synthetic approach to new iron-oxo cores was the reaction of dioxygen with $Fe(II)$ starting materials. The $H NMR$ spectrum of an air-oxidized acetonitrile solution of $[Fe($ tren $)(O₂ [CCH₃](CF₃SO₃)¹⁷$ reveals a set of considerably narrower resonances with greater contact shifts than those normally observed for Fe(III) oxo-bridged dimers.^{3,18} A crystalline material which exhibits the same solution spectrum between 10 and 160 ppm (Figure 1) can be isolated as the solvated triflate salt by air oxidation of a 2:2:2:1 molar ratio of $Fe(II)$, $CD_3CO_2^-$, $CF_3SO_3^-$, and tren in butyronitrile. A convenient preparative procedure involves passing *02* through a colorless slurry prepared from **0.17** g (0.50 mmol) of Fe(tren)(O_2CCH_3)₂¹⁷ and 0.22 g (0.50 mmol) of $Fe(CF_3SO_3)_2$ ²MeCN in 10 mL of butyronitrile to form an orange-brown solution from which a greenish-brown crude microcrystalline product is isolated (0.28 g, 86% yield). Pure crystals of **1,19** suitable for diffraction measurements,20 were grown by diffusing diethyl ether into a solution of the crude product in an **acetonitrile/butyronitrile** mixture. To ensure that **1** is not a mixed-valence Fe(II)/Fe(III) aggregate, the triflate salt of **1** has subsequently been isolated by starting from an iron(III) salt.²¹

The remarkable octairon hexacation 1 (Figure 2) has **no** crystallographically imposed symmetry yet belongs to an idealized **S4** point group, a rare occurrence for a multinuclear aggregate.22 Four central irons (Fe_c) and a μ ₄-O ligand make up a planar

(17) Hagen, K. S.; Sakuta, **M.** Unpublished results.

- (18) (a) Armstrong, W. H.; Spool, A.; Papaefthymiou, G. C.; Frankel, **R. B.;** Lippard,S. J.J. *Am. Chem. Sot.* 1984,106,3653-3667. (b) Wu, F.-J.; Kurtz, D. M. *J. Am. Chem. Soc.* 1989, 111, 6563-6572. (c) Nair, V.; Hagen, K. S. Unpublished results.
- (19) Anal. Calcd for $1(CF_3SO_3)_{6} \cdot 1.5CH_3CN$, $C_{49}F_{18}F_{68}H_{100,5}N_{17,3}O_{39}S_{6}$:
C, 23.17; H, 3.99; N, 9.65; S, 7.57. Found: C, 23.22; H, 4.03; N, 9.27; S , 7.18.
(20) X-ray analysis (-100 °C): 1.5CH₃CN crystallizes in the triclinic space
- (20) X-ray analysis (-100 °C): 1.5CH₃CN crystallizes in the triclinic space
group $P\bar{1}$, with $\alpha = 15.951(10)$ Å, $b = 16.432(12)$ Å, $c = 20.840(16)$
Å, $\alpha = 99.31(b)$ °, $\beta = 90.55(6)$ °, $\gamma = 94.87(6)$ °, $V = 5369$ (4) $K\alpha$ radiation) on a single-crystal X -ray diffractometer, the structure was solved by Patterson synthesis interpretation followed by expansion, Fourier syntheses, and refinement to an *R* index of 0.069. roup *Pi,* with
- (21) An acetonitrile solution **of** Fe(CF>SO,),.6DMF, tren, acetic acid, water, and triethylamine in an 8:4:8:5:18 mole ratio afforded crystals of 1 in 27% yield following ether diffusion.

Figure 1. ¹H NMR of $[Fe_8O_5(O_2CCD_3)_8(tren)_4](CF_3SO_3)_6$ (in CD₃CN at 21 °C and 600 MHz): CH at 153.5, 148.4, 147.4, 143.8, 128.8, 80.4, 49.1, 35.6, 30.0, 29.7, 19.9, 13.6 ppm, NH at 60.9, 20.3, 18.7, 13.6, 80 ppm, and CH₃ at 19.9, 3.0 ppm downfield of TMS. Inset: ²H NMR (92) MHz) of the same sample showing the labeled acetate resonances at 19.9 and 3.0 ppm.

Figure 2. Structure of 1 depicting 30% ellipsoids. Carbons arean arbitrary size, and hydrogens have been omitted for clarity. Metrical averages under **S4** point group and representative interatomic distances **(A)** and angles (deg): $Fe_c...Fe_c, 2.889(9); Fe(1)...Fe(2), 2.887(3); Fe_c...Fe₀ (across μ -O₂CCH₃), 3.34(1); Fe(1)...Fe(5), 3.35; Fe_c...Fe₀, 3.52(2); Fe(1)...Fe$ $p(8), 3.54; Fe_c-O(1), 2.043(11); Fe(2)-O(1), 2.044(10); Fe_c-(\mu_3-O)$ (across μ -O₂CCH₃), 1.94(1); Fe(1)-O(2), 1.949(9); Fe_c-(μ ₃-O), 1.94(1); Fe(1)-O(5), 1.945(10); Fe_o-(μ ₃-O), 1.822(15); Fe(5)-O(2), 1.819(9); Fe- $(\mu$ -O₂CCH₃), 2.04(2); Fe-3°N(av), 2.22(2); Fe-1°N(av), 2.15(2); Fe-O(1)-(μ_3 -O)(av), 93.3; Fe_c-(μ_3 -O)-Fe_o (across μ -O₂CCH₃), 125.4-(9); Fe_c-(μ ₃-O)-Fe_o, 138.4(14).

Fe₄O unit²³ with four acetate ligands, each bridging two Fe_c alternately above and below the Fe40 plane and perpendicular toit. Four additional iron atoms (Fe_o) are connected to the central core by four μ_3 -O ligands, each bridging two Fe_c and one Fe_o, and four additional acetate ligands, each bridging one Fe, and one Fe,. The Fe, are alternately displaced above and below the central plane.23 The Fe-0 distances are typical of iron(II1) in other

carboxylate complexes. The aggregate can be constructed from either four dimers (Fe₂O, structure **a**) brought together by the central oxo, a fusion of three trimers (Fe30, **b)** by the central oxo, or a fragment of the hexamethalate (Fe₆O, e) in which coordination of two of the *trans* Fe is prevented by the four carboxylates that are perpendicular to the plane.

The Fe, are coordinated solely to six oxygen donor ligands, whereas the Fe, are ligated by two oxygen ligands and the four nitrogen donors of the ligand tren. This is reflected in the Mössbauer spectrum which is fit to two equal-intensity, overlapping doublets²⁴ which are consistent with high-spin iron(III). The variable-temperature behavior of the magnetic moment of a solid sample indicates antiferromagnetic coupling between Fe- (111) atoms but with a paramagnetic ground or low lying state.25 This is supported by structure observed in preliminary Mössbauer measurements **in** an applied field at **4** K.

The solution magnetic moment (Evans method 2.45 μ_B /Fe) is similar to that of the solid, suggesting that the structure is maintained in solution. The **'H** NMR spectrum (Figure 1) provides further evidence of this. The narrowest two resonances are assigned (by deuteration) to the acetate ligands, whereas 12 resonances arise from the methylene hydrogens of tren, while the remaining broader resonances are D_2O -exchangeable amine protons. The solution structure is thus consistent with S_4 point group and is stable in aprotic but not protic solvents.

Complex **1** is the first iron aggregate to have a planar quadruply bridging oxo ligand, the only others being the recently discovered V_4 ,²⁶ Nb₄,²⁷ and Cu₄²⁸ oxo aggregates. The Fe₄O₅ core may occur in the polymerization of iron(II1) in aqueous or alcoholic media and can be considered the central fragment of the hexametalate M_6O_{19} , which is common to early transition metals and whose iron-oxo-alkoxo analog was recently reported.¹¹ The structural features of a compact $Fe₄O₅$ core loosely capped by four FeL units through oxo and carboxylato bridges render **1** a good model for the biomineralization of iron oxides, which probably involves the nucleation of compact, regular FeO(0H) cores from amorphous iron sources. Similar features are observed in the largest iron-oxo aggregate crystallized to date, in which $Fe_7(OH)_{12}$ cores are surrounded by Fe_{10} and Fe_{12} caps.¹⁶

Acknowledgment. We thank N. Ravi and Professor **B.** H. Huynh for Mössbauer data and Professor E. P. Day for susceptibility data. This research was supported in part by the University Research Committee of Emory University, the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Institutes of Health (Grants GM **46506** and S10 **RR07323).**

Supplementary Material Available: Textual details of the X-ray experimental work and tables of crystallographic data, atomic positional and isotropic thermal parameters, anisotropic thermal parameters, and bond lengths and angles for **1** (20 pages). Ordering information is given on any current masthead page.

- (22) Braunstein, P.; Oswald, B.; Tiripicchio, A.; Camellini, **M.** T. *Angew. Chem., Inr. Ed. Engl.* **1990,** 29, 1140-1143.
- (23) Displacements from the unweighted least-squares plane defined **by** Fe, and O(1): Fe_c, -0.007 to 0.010 A; O(1), -0.005 A; Fe_o, -1.441 to 1.348 $\mathbf{\hat{A}}; \mathbf{O_o}, -0.560$ to 0.579 $\mathbf{\hat{A}}$. Angles at Fe_c defining the square range from 89.6 to 90.3°.
(24) For measurements made at 4.2 K and referenced to iron metal at room
- (24) For measurements made at 4.2 K and referenced to iron metal at room temperature: $\Delta E_Q(F_e) = 1.37$ mm/s, $\delta(F_e) = 0.45$ mm/s and ΔE_Q - $(Fe_0) = 1.04$ mm/s, $\delta(F_0) = 0.49$ mm/s.
- (25) The magnetic moment per Fe_s decreases nonlinearly from 6.6 μ_B at 300 K to 5.56 *μ*_B at 200 K to 2.65 *μ*_B at 20 K. A more detailed analysis is in progress.
- (26) in progress. Rambo, J. A.; Huffman, J. C.; Christou,G.; Eisenstein, *O.J.* Am. *Chem. SOC.* **1989,** *11 1,* 8027.
- (27) Cotton, F. A.; Shang, M. J. J. Am. Chem. Soc. 1990, 112, 1584.
Samuels, J. A.; Vaartstra, B. A.; Huffman, J. C.; Trojan, K. L.; Hatfield,
- (28) W. E.; Caulton, K. G. J. *Am. Chem. SOC.* **1990,** *112,* 9623-9624.